Pythonãšãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã䜿çšããŠã詳现ãªãã°åæãç°åžžã®ç¹å®ãããã³ã°ããŒãã«ãªã·ã¹ãã ããã©ãŒãã³ã¹ã®åäžãå®çŸããæ¹æ³ãã玹ä»ããŸãã
Pythonãã°åæïŒãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã«ããæŽå¯ã®è§£æ
仿¥ã®ããŒã¿äž»å°ã®äžçã§ã¯ããã°ã¯éåžžã«è²Žéãªæ å ±æºã§ãããã°ã¯ãã·ã¹ãã ã€ãã³ãããŠãŒã¶ãŒã¢ã¯ãã£ããã£ãããã³æœåšçãªåé¡ã®è©³çްãªèšé²ãæäŸããŸãããã ããæ¯æ¥çæããããã°ããŒã¿ã®éãèšå€§ã§ãããããæåã§ã®åæã¯å°é£ãªäœæ¥ã«ãªãå¯èœæ§ããããŸããããã§ãPythonãšãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã®åºçªã§ãããããã®ã¢ã«ãŽãªãºã ã¯ãããã»ã¹ãèªååããææçŸ©ãªæŽå¯ãæœåºããã°ããŒãã«ã€ã³ãã©ã¹ãã©ã¯ãã£å šäœã§ã·ã¹ãã ããã©ãŒãã³ã¹ãåäžãããããã®åŒ·åãªããŒã«ãæäŸããŸãã
ãã°åæã«Pythonã䜿çšããçç±
Pythonã¯ãããŒã¿åæã®èšèªãšããŠå°é ããŠããããã°åæãäŸå€ã§ã¯ãããŸãããçç±ã¯æ¬¡ã®ãšããã§ãã
- è±å¯ãªã©ã€ãã©ãªïŒPythonã¯ãããŒã¿æäœãåæãããã³æ©æ¢°åŠç¿çšã«ç¹å¥ã«èšèšãããè±å¯ãªã©ã€ãã©ãªã®ãšã³ã·ã¹ãã ãèªã£ãŠããŸãã
pandasãnumpyãscikit-learnãããã³regexãªã©ã®ã©ã€ãã©ãªã¯ã广çãªãã°åæã«å¿ èŠãªæ§æèŠçŽ ãæäŸããŸãã - 䜿ããããïŒPythonã®æç¢ºã§ç°¡æœãªæ§æã«ãããããã°ã©ãã³ã°çµéšãéãããŠãã人ã§ãç°¡åã«åŠç¿ããŠäœ¿çšã§ããŸããããã«ãããããŒã¿ãµã€ãšã³ãã£ã¹ããšã·ã¹ãã 管çè äž¡æ¹ã®åå ¥éå£ãäœããªããŸãã
- ã¹ã±ãŒã©ããªãã£ïŒPythonã¯å€§èŠæš¡ãªããŒã¿ã»ãããç°¡åã«åŠçã§ãããããè€éãªã·ã¹ãã ãé«ãã©ãã£ãã¯ã¢ããªã±ãŒã·ã§ã³ããã®ãã°ã®åæã«é©ããŠããŸããããŒã¿ã¹ããªãŒãã³ã°ã忣åŠçãªã©ã®ææ³ã䜿çšãããšãã¹ã±ãŒã©ããªãã£ãããã«åäžãããããšãã§ããŸãã
- 倿§æ§ïŒPythonã¯ãåçŽãªãã£ã«ã¿ãªã³ã°ãéèšãããè€éãªãã¿ãŒã³èªèãç°åžžæ€ç¥ãŸã§ãå¹ åºããã°åæã¿ã¹ã¯ã«äœ¿çšã§ããŸãã
- ã³ãã¥ããã£ãµããŒãïŒå€§èŠæš¡ã§æŽ»çºãªPythonã³ãã¥ããã£ã¯ãããããã¹ãã«ã¬ãã«ã®ãŠãŒã¶ãŒã«è±å¯ãªãªãœãŒã¹ããã¥ãŒããªã¢ã«ãããã³ãµããŒããæäŸããŸãã
ãã°åæã®ããã®ãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã®çè§£
ãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã¯ãããŒã¿å ã®ç¹°ãè¿ããã¿ãŒã³ãšç°åžžãèå¥ããããã«èšèšãããŠããŸãããã°åæã®ã³ã³ããã¹ãã§ã¯ããããã®ã¢ã«ãŽãªãºã ã䜿çšããŠãç°åžžãªåäœãæ€åºããã»ãã¥ãªãã£ã®è åšãç¹å®ããæœåšçãªã·ã¹ãã é害ãäºæž¬ã§ããŸãããã°åæã«ãã䜿çšããããã¿ãŒã³èªèã¢ã«ãŽãªãºã ãããã€ã瀺ããŸãã
1. æ£èŠè¡šçŸïŒRegexïŒ
æ£èŠè¡šçŸã¯ãããã¹ãããŒã¿å ã®ãã¿ãŒã³ãããã³ã°ã®ããã®åºæ¬çãªããŒã«ã§ããæ£èŠè¡šçŸã䜿çšãããšããã°ãã¡ã€ã«å ã§æ€çŽ¢ããç¹å®ã®ãã¿ãŒã³ãå®çŸ©ã§ããŸããããšãã°ãæ£èŠè¡šçŸã䜿çšããŠãç¹å®ã®ãšã©ãŒã³ãŒããŸãã¯ç¹å®ã®ãŠãŒã¶ãŒã®IPã¢ãã¬ã¹ãå«ããã¹ãŠã®ãã°ãšã³ããªãèå¥ã§ããŸãã
äŸïŒIPã¢ãã¬ã¹ãå«ããã¹ãŠã®ãã°ãšã³ããªãæ€çŽ¢ããã«ã¯ãæ¬¡ã®æ£èŠè¡šçŸã䜿çšããŸãã
\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\b
Pythonã®reã¢ãžã¥ãŒã«ã¯ãæ£èŠè¡šçŸãæäœããæ©èœãæäŸããŸããããã¯ãæ§é åãããŠããªããã°ããŒã¿ããé¢é£æ
å ±ãæœåºããéã®æåã®ã¹ãããã§ããããšããããããŸãã
2. ã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã
ã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã ã¯ãé¡äŒŒããããŒã¿ãã€ã³ããã°ã«ãŒãåããŸãããã°åæã§ã¯ãããã䜿çšããŠãã€ãã³ããŸãã¯ãŠãŒã¶ãŒã®åäœã®äžè¬çãªãã¿ãŒã³ãèå¥ã§ããŸããããšãã°ãã¯ã©ã¹ã¿ãªã³ã°ã䜿çšããŠãã¿ã€ã ã¹ã¿ã³ããéä¿¡å IPã¢ãã¬ã¹ããŸãã¯ã€ãã³ãã®çš®é¡ã«åºã¥ããŠãã°ãšã³ããªãã°ã«ãŒãåã§ããŸãã
äžè¬çãªã¯ã©ã¹ã¿ãªã³ã°ã¢ã«ãŽãªãºã ïŒ
- K-MeansïŒã¯ã©ã¹ã¿ã»ã³ããã€ããŸã§ã®è·é¢ã«åºã¥ããŠãããŒã¿ãkåã®åå¥ã®ã¯ã©ã¹ã¿ã«åå²ããŸãã
- éå±€åã¯ã©ã¹ã¿ãªã³ã°ïŒã¯ã©ã¹ã¿ã®éå±€ãäœæããããŸããŸãªã¬ãã«ã®ç²åºŠãæ¢çŽ¢ã§ããããã«ããŸãã
- DBSCANïŒãã€ãºã䌎ãã¢ããªã±ãŒã·ã§ã³ã®å¯åºŠããŒã¹ç©ºéã¯ã©ã¹ã¿ãªã³ã°ïŒïŒå¯åºŠã«åºã¥ããŠã¯ã©ã¹ã¿ãèå¥ããæå³ã®ããã¯ã©ã¹ã¿ãããã€ãºã广çã«åé¢ããŸããå žåçãªãã¿ãŒã³ã«é©åããªãç°åžžãªãã°ãšã³ããªãèå¥ããã®ã«åœ¹ç«ã¡ãŸãã
äŸïŒWebãµãŒããŒã®ã¢ã¯ã»ã¹ãã°ãã°ããŒãã«ã«åæããããšãæ³åããŠã¿ãŠãã ãããK-Meansã¯ãIPã¢ãã¬ã¹ïŒå°çäœçœ®æ å ±ã«ãã¯ã¢ããåŸïŒã«åºã¥ããŠå°ççå°åããšã«ã¢ã¯ã»ã¹ãã¿ãŒã³ãã°ã«ãŒãåããç°åžžã«é«ããã©ãã£ãã¯ãŸãã¯çãããã¢ã¯ãã£ããã£ã®ããå°åãæããã«ããããšãã§ããŸããéå±€åã¯ã©ã¹ã¿ãªã³ã°ã䜿çšããŠã蚪åããããŒãžã®ã·ãŒã±ã³ã¹ã«åºã¥ããŠããŸããŸãªçš®é¡ã®ãŠãŒã¶ãŒã»ãã·ã§ã³ãèå¥ã§ããŸãã
3. ç°åžžæ€ç¥ã¢ã«ãŽãªãºã
ç°åžžæ€ç¥ã¢ã«ãŽãªãºã ã¯ãéåžžããå€§å¹ ã«éžè±ããããŒã¿ãã€ã³ããèå¥ããŸãããããã®ã¢ã«ãŽãªãºã ã¯ãã»ãã¥ãªãã£ã®è åšãã·ã¹ãã é害ãããã³ãã®ä»ã®ç°åžžãªã€ãã³ãã®æ€åºã«ç¹ã«åœ¹ç«ã¡ãŸãã
äžè¬çãªç°åžžæ€ç¥ã¢ã«ãŽãªãºã ïŒ
- Isolation ForestïŒããŒã¿ç©ºéãã©ã³ãã ã«åå²ããŠç°åžžãåé¢ããŸããéåžžãç°åžžãåé¢ããã«ã¯ãããå°ãªãããŒãã£ã·ã§ã³ãå¿ èŠã§ãã
- One-Class SVMïŒãµããŒããã¯ã¿ãŒãã·ã³ïŒïŒéåžžã®ããŒã¿ãã€ã³ãã®åšãã®å¢çãåŠç¿ãããã®å¢çã®å€åŽã«ãããã€ã³ããç°åžžãšããŠèå¥ããŸãã
- ãªãŒããšã³ã³ãŒããŒïŒãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒéåžžã®ããŒã¿ãåæ§ç¯ããããã«ãã¥ãŒã©ã«ãããã¯ãŒã¯ããã¬ãŒãã³ã°ããŸããç°åžžã¯ããããã¯ãŒã¯ãæ£ç¢ºã«åæ§ç¯ããã®ã«èŠåŽããããŒã¿ãã€ã³ããšããŠèå¥ãããŸãã
äŸïŒããŒã¿ããŒã¹ã¯ãšãªãã°ã§ãªãŒããšã³ã³ãŒããŒã䜿çšãããšãå žåçãªã¯ãšãªãã¿ãŒã³ããéžè±ããç°åžžãŸãã¯æªæã®ããã¯ãšãªãèå¥ããSQLã€ã³ãžã§ã¯ã·ã§ã³æ»æãé²ãã®ã«åœ¹ç«ã¡ãŸããã°ããŒãã«ãªæ±ºæžåŠçã·ã¹ãã ã§ã¯ãIsolation Forestã¯ãç°åžžãªéé¡ãå ŽæããŸãã¯é »åºŠã®ãã©ã³ã¶ã¯ã·ã§ã³ã«ãã©ã°ãç«ãŠãããšãã§ããŸãã
4. æç³»ååæ
æç³»ååæã¯ãçµæçã«åéãããããŒã¿ãåæããããã«äœ¿çšãããŸãããã°åæã§ã¯ãããã䜿çšããŠããã°ããŒã¿ã®åŸåãå£ç¯æ§ãããã³ç°åžžãæéçµéãšãšãã«èå¥ã§ããŸãã
äžè¬çãªæç³»ååæææ³ïŒ
- ARIMAïŒèªå·±ååž°ç©åç§»åå¹³åïŒïŒéå»ã®å€ã䜿çšããŠå°æ¥ã®å€ãäºæž¬ããçµ±èšã¢ãã«ã
- ProphetïŒRããã³Pythonã§å®è£ ãããäºæž¬æé ãæ¬ æããŒã¿ããã¬ã³ãã®å€åã«åŒ·ããéåžžã¯å€ãå€ãããŸãåŠçããŸãã
- å£ç¯åè§£ïŒæç³»åããã¬ã³ããå£ç¯ãããã³æ®å·®ã³ã³ããŒãã³ãã«åè§£ããŸãã
äŸïŒããŸããŸãªããŒã¿ã»ã³ã¿ãŒã®ãµãŒããŒå šäœã®CPU䜿çšçãã°ã«ARIMAãé©çšãããšãå°æ¥ã®ãªãœãŒã¹ããŒãºãäºæž¬ããæœåšçãªããã«ããã¯ã«äºåã«å¯ŸåŠããã®ã«åœ¹ç«ã¡ãŸããå£ç¯åè§£ã¯ãç¹å®ã®å°åã®ç¹å®ã®äŒæ¥ã«Webãã©ãã£ãã¯ãæ¥å¢ããããšãæããã«ãããªãœãŒã¹ã®æé©åãããå²ãåœãŠãå¯èœã«ããŸãã
5. ã·ãŒã±ã³ã¹ãã€ãã³ã°
ã·ãŒã±ã³ã¹ãã€ãã³ã°ã¯ãã·ãŒã±ã³ã·ã£ã«ããŒã¿å ã®ãã¿ãŒã³ãèå¥ããããã«äœ¿çšãããŸãããã°åæã§ã¯ãããã䜿çšããŠãæåãããã°ã€ã³ãã·ã¹ãã é害ãªã©ãç¹å®ã®ææã«é¢é£ä»ããããŠããã€ãã³ãã®ã·ãŒã±ã³ã¹ãèå¥ã§ããŸãã
äžè¬çãªã·ãŒã±ã³ã¹ãã€ãã³ã°ã¢ã«ãŽãªãºã ïŒ
- AprioriïŒãã©ã³ã¶ã¯ã·ã§ã³ããŒã¿ããŒã¹å ã®é »ç¹ãªã¢ã€ãã ã»ãããèŠã€ããŠãããé¢é£ã«ãŒã«ãçæããŸãã
- GSPïŒäžè¬åãããã·ãŒã±ã³ã·ã£ã«ãã¿ãŒã³ïŒïŒAprioriãæ¡åŒµããŠã·ãŒã±ã³ã·ã£ã«ããŒã¿ãåŠçããŸãã
äŸïŒeã³ããŒã¹ãã©ãããã©ãŒã ã®ãŠãŒã¶ãŒã¢ã¯ãã£ããã£ãã°ãåæãããšãè³Œå ¥ã«ã€ãªããã¢ã¯ã·ã§ã³ã®äžè¬çãªã·ãŒã±ã³ã¹ãæããã«ãªããã¿ãŒã²ãããçµã£ãããŒã±ãã£ã³ã°ãã£ã³ããŒã³ãå¯èœã«ãªããŸããã·ã¹ãã ã€ãã³ããã°ãåæãããšãã·ã¹ãã ã¯ã©ãã·ã¥ã®åã«äžè²«ããŠçºçããã€ãã³ãã®ã·ãŒã±ã³ã¹ãç¹å®ããäºåãã©ãã«ã·ã¥ãŒãã£ã³ã°ãæå¹ã«ããããšãã§ããŸãã
å®è·µçãªäŸïŒç°åžžãªãã°ã€ã³è©Šè¡ã®æ€åº
Pythonãšç°åžžæ€ç¥ã¢ã«ãŽãªãºã ã䜿çšããŠãç°åžžãªãã°ã€ã³è©Šè¡ãæ€åºããæ¹æ³ã説æããŸããæç¢ºã«ããããã«ãç°¡åãªäŸã䜿çšããŸãã
- ããŒã¿ã®æºåïŒãŠãŒã¶ãŒåãIPã¢ãã¬ã¹ãã¿ã€ã ã¹ã¿ã³ããããã³ãã°ã€ã³ã¹ããŒã¿ã¹ïŒæå/倱æïŒãªã©ã®æ©èœãå«ããã°ã€ã³ããŒã¿ããããšä»®å®ããŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒç¹å®ã®æéæ å
ã®å€±æãããã°ã€ã³è©Šè¡ã®æ°ãæåŸã®ãã°ã€ã³è©Šè¡ããã®çµéæéãIPã¢ãã¬ã¹ã®å Žæãªã©ããã°ã€ã³åäœããã£ããã£ããæ©èœãäœæããŸããå°çäœçœ®æ
å ±ã䜿çšããŠã
geopyãªã©ã®ã©ã€ãã©ãªã䜿çšããŠå°çäœçœ®æ å ±ãååŸã§ããŸãã - ã¢ãã«ã®ãã¬ãŒãã³ã°ïŒå±¥æŽãã°ã€ã³ããŒã¿ã§ãIsolation ForestãOne-Class SVMãªã©ã®ç°åžžæ€ç¥ã¢ãã«ããã¬ãŒãã³ã°ããŸãã
- ç°åžžæ€ç¥ïŒãã¬ãŒãã³ã°æžã¿ã®ã¢ãã«ãæ°ãããã°ã€ã³è©Šè¡ã«é©çšããŸããã¢ãã«ããã°ã€ã³è©Šè¡ãç°åžžãšããŠãã©ã°ãç«ãŠãå Žåãæœåšçãªã»ãã¥ãªãã£ã®è åšã瀺ããŠããå¯èœæ§ããããŸãã
- ã¢ã©ãŒãïŒç°åžžãªãã°ã€ã³è©Šè¡ãæ€åºããããšãã«ã¢ã©ãŒããããªã¬ãŒããŸãã
Pythonã³ãŒãã¹ããããïŒèª¬æçšïŒïŒ
import pandas as pd
from sklearn.ensemble import IsolationForest
# ãã°ã€ã³ããŒã¿ã®ããŒã
data = pd.read_csv('login_data.csv')
# ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒäŸïŒå€±æãããã°ã€ã³è©Šè¡ïŒ
data['failed_attempts'] = data.groupby('username')['login_status'].cumsum()
# ã¢ãã«ã®æ©èœãéžæ
features = ['failed_attempts']
# Isolation Forestã¢ãã«ã®ãã¬ãŒãã³ã°
model = IsolationForest(n_estimators=100, contamination='auto', random_state=42)
model.fit(data[features])
# ç°åžžãäºæž¬
data['anomaly'] = model.predict(data[features])
# ç°åžžãªãã°ã€ã³è©Šè¡ãèå¥
anomalies = data[data['anomaly'] == -1]
print(anomalies)
éèŠãªèæ ®äºé ïŒ
- ããŒã¿ã®å質ïŒç°åžžæ€ç¥ã¢ãã«ã®ç²ŸåºŠã¯ããã°ããŒã¿ã®å質ã«ãã£ãŠç°ãªããŸããããŒã¿ãã¯ãªãŒã³ã§æ£ç¢ºããã€å®å šã§ããããšã確èªããŠãã ããã
- ç¹åŸŽéã®éžæïŒå¹æçãªç°åžžæ€ç¥ã«ã¯ãé©åãªç¹åŸŽéãéžæããããšãéèŠã§ããããŸããŸãªç¹åŸŽéã詊ããŠãã¢ãã«ã®ããã©ãŒãã³ã¹ã«å¯Ÿãã圱é¿ãè©äŸ¡ããŠãã ããã
- ã¢ãã«ã®èª¿æŽïŒç°åžžæ€ç¥ã¢ãã«ã®ãã€ããŒãã©ã¡ãŒã¿ãŒã埮調æŽããŠãããã©ãŒãã³ã¹ãæé©åããŸãã
- ã³ã³ããã¹ãèªèïŒçµæãè§£éãããšãã¯ããã°ããŒã¿ã®ã³ã³ããã¹ããèæ ®ããŠãã ãããç°åžžã¯ãåžžã«ã»ãã¥ãªãã£ã®è åšãã·ã¹ãã é害ã瀺ããšã¯éããŸããã
Pythonã䜿çšãããã°åæãã€ãã©ã€ã³ã®æ§ç¯
ãã°ã广çã«åæããã«ã¯ãå ç¢ãªãã°åæãã€ãã©ã€ã³ãäœæãããšåœ¹ç«ã¡ãŸãããã®ãã€ãã©ã€ã³ã¯ããã°ããŒã¿ã®åéãåŠçãåæãããã³èŠèŠåã®ããã»ã¹ãèªååã§ããŸãã
ãã°åæãã€ãã©ã€ã³ã®äž»èŠã³ã³ããŒãã³ãïŒ
- ãã°ã®åéïŒãµãŒããŒãã¢ããªã±ãŒã·ã§ã³ããããã¯ãŒã¯ããã€ã¹ãªã©ãããŸããŸãªãœãŒã¹ãããã°ãåéããŸããFluentdãLogstashãããã³rsyslogãªã©ã®ããŒã«ããã°åéã«äœ¿çšã§ããŸãã
- ãã°ã®åŠçïŒãã°ããŒã¿ãã¯ãªãŒã³ã¢ãããè§£æãããã³æ§é åããã圢åŒã«å€æããŸããPythonã®
regexããã³pandasã©ã€ãã©ãªã¯ããã°åŠçã«åœ¹ç«ã¡ãŸãã - ããŒã¿ã¹ãã¬ãŒãžïŒåŠçããããã°ããŒã¿ãããŒã¿ããŒã¹ãŸãã¯ããŒã¿ãŠã§ã¢ããŠã¹ã«ä¿åããŸãããªãã·ã§ã³ã«ã¯ãElasticsearchãMongoDBãããã³Apache Cassandraãå«ãŸããŸãã
- åæãšèŠèŠåïŒãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã䜿çšããŠãã°ããŒã¿ãåæããMatplotlibãSeabornãããã³Grafanaãªã©ã®ããŒã«ã䜿çšããŠçµæãèŠèŠåããŸãã
- ã¢ã©ãŒãïŒéèŠãªã€ãã³ããŸãã¯ç°åžžã管çè ã«éç¥ããããã«ã¢ã©ãŒããèšå®ããŸãã
äŸïŒã°ããŒãã«ãªeã³ããŒã¹äŒæ¥ã¯ãWebãµãŒããŒãã¢ããªã±ãŒã·ã§ã³ãµãŒããŒãããã³ããŒã¿ããŒã¹ãµãŒããŒãããã°ãåéããå ŽåããããŸãããã°ã¯ããŠãŒã¶ãŒã¢ã¯ãã£ããã£ããã©ã³ã¶ã¯ã·ã§ã³ã®è©³çްãããã³ãšã©ãŒã¡ãã»ãŒãžãªã©ã®é¢é£æ å ±ãæœåºããããã«åŠçãããŸããåŠçãããããŒã¿ã¯Elasticsearchã«ä¿åãããKibanaã䜿çšããŠããŒã¿ãèŠèŠåããããã·ã¥ããŒããäœæããŸããäžæ£ãªã¢ã¯ã»ã¹è©Šè¡ãäžæ£ãªãã©ã³ã¶ã¯ã·ã§ã³ãªã©ãçãããã¢ã¯ãã£ããã£ã«ã€ããŠã»ãã¥ãªãã£ããŒã ã«éç¥ããããã«ã¢ã©ãŒããæ§æãããŠããŸãã
ãã°åæã®ããã®é«åºŠãªãã¯ããã¯
åºæ¬çãªã¢ã«ãŽãªãºã ãšãã¯ããã¯ã«å ããŠãããã€ãã®é«åºŠãªã¢ãããŒãã§ãã°åææ©èœã匷åã§ããŸãã
1. èªç¶èšèªåŠçïŒNLPïŒ
NLPãã¯ããã¯ãé©çšããŠãæ§é åãããŠããªããã°ã¡ãã»ãŒãžãåæããæå³ãšã³ã³ããã¹ããæœåºã§ããŸããããšãã°ãNLPã䜿çšããŠããã°ã¡ãã»ãŒãžã®ææ ãèå¥ãããããŠãŒã¶ãŒåãIPã¢ãã¬ã¹ããšã©ãŒã³ãŒããªã©ã®äž»èŠãªãšã³ãã£ãã£ãæœåºãããã§ããŸãã
2. ãã°è§£æã®ããã®æ©æ¢°åŠç¿
åŸæ¥ã®ãã°è§£æã¯ãå®çŸ©æžã¿ã®æ£èŠè¡šçŸã«äŸåããŠããŸããæ©æ¢°åŠç¿ã¢ãã«ã¯ããã°ã¡ãã»ãŒãžãèªåçã«è§£æããããšãåŠç¿ãããã°åœ¢åŒã®å€æŽã«é©å¿ããæåæ§æã®å¿ èŠæ§ãæžããããšãã§ããŸããDrainãLKEãªã©ã®ããŒã«ã¯ãæ©æ¢°åŠç¿ã䜿çšãããã°è§£æçšã«ç¹å¥ã«èšèšãããŠããŸãã
3. ã»ãã¥ãªãã£ã®ããã®é£ååŠç¿
ãã©ã€ãã·ãŒèŠå¶ïŒGDPRãªã©ïŒã«ãããæ©å¯ãã°ããŒã¿ãããŸããŸãªå°åãçµç¹éã§å ±æã§ããªãã·ããªãªã§ã¯ãé£ååŠç¿ã䜿çšã§ããŸããé£ååŠç¿ã䜿çšãããšãçã®ããŒã¿ãå ±æããã«ã忣ããŒã¿ã§æ©æ¢°åŠç¿ã¢ãã«ããã¬ãŒãã³ã°ã§ããŸããããã¯ãè€æ°ã®å°åãŸãã¯çµç¹ã«ãŸãããã»ãã¥ãªãã£ã®è åšãæ€åºããå Žåã«ç¹ã«åœ¹ç«ã¡ãŸãã
ãã°åæã®ããã®ã°ããŒãã«ãªèæ ®äºé
ã°ããŒãã«ã€ã³ãã©ã¹ãã©ã¯ãã£ããã®ãã°ãåæããå Žåã¯ã次ã®èŠçŽ ãèæ ®ããããšãäžå¯æ¬ ã§ãã
- ã¿ã€ã ãŸãŒã³ïŒåæã®äžäžèŽãé¿ããããã«ããã¹ãŠã®ãã°ããŒã¿ãäžè²«ããã¿ã€ã ãŸãŒã³ã«å€æãããŠããããšã確èªããŠãã ããã
- ããŒã¿ãã©ã€ãã·ãŒèŠå¶ïŒãã°ããŒã¿ãåéããã³åŠçããéã¯ãGDPRãCCPAãªã©ã®ããŒã¿ãã©ã€ãã·ãŒèŠå¶ã«æºæ ããŠãã ããã
- èšèªãµããŒãïŒãã°åæããŒã«ãè€æ°ã®èšèªããµããŒãããŠããããšã確èªããŠãã ããããã°ã«ããŸããŸãªèšèªã®ã¡ãã»ãŒãžãå«ãŸããŠããå¯èœæ§ãããããã§ãã
- æåçãªéãïŒãã°ããŒã¿ãè§£éããéã¯ãæåçãªéãã«æ³šæããŠãã ãããããšãã°ãç¹å®ã®çšèªããã¬ãŒãºã¯ãæåã«ãã£ãŠç°ãªãæå³ãæã€å ŽåããããŸãã
- å°ççãªååžïŒãã°ããŒã¿ãåæããéã¯ãã€ã³ãã©ã¹ãã©ã¯ãã£ã®å°ççãªååžãèæ ®ããŠãã ãããç¹å®ã®ã€ãã³ããŸãã¯ç¶æ³ã«ãããç¹å®ã®å°åã§ç°åžžãçºçãããããªãå ŽåããããŸãã
çµè«
Pythonãšãã¿ãŒã³èªèã¢ã«ãŽãªãºã ã¯ããã°ããŒã¿ãåæããç°åžžãç¹å®ããã·ã¹ãã ããã©ãŒãã³ã¹ãåäžãããããã®åŒ·åãªããŒã«ããããæäŸããŸãããããã®ããŒã«ã掻çšããããšã§ãçµç¹ã¯ãã°ãã貎éãªæŽå¯ãåŸãŠãæœåšçãªåé¡ã«äºåã«å¯ŸåŠããã°ããŒãã«ã€ã³ãã©ã¹ãã©ã¯ãã£å šäœã®ã»ãã¥ãªãã£ã匷åã§ããŸããããŒã¿éãå¢ãç¶ããã«ã€ããŠãèªåãã°åæã®éèŠæ§ã¯é«ãŸãã°ããã§ãã仿¥ã®ããŒã¿äž»å°ã®äžçã§ç«¶äºåãç¶æããããšããŠããçµç¹ã«ãšã£ãŠããããã®ãã¯ããã¯ãæ¡çšããããšã¯äžå¯æ¬ ã§ãã
ãããªã調æ»ïŒ
- ç°åžžæ€ç¥ã®ããã®Scikit-learnããã¥ã¡ã³ãïŒ https://scikit-learn.org/stable/modules/outlier_detection.html
- Pandasããã¥ã¡ã³ãïŒ https://pandas.pydata.org/docs/
- Regexãã¥ãŒããªã¢ã«ïŒ https://docs.python.org/3/howto/regex.html